Evolution of the human brain | Science

Since early hominids emerged 5 million years ago, humans have evolved sizable brains to support higher cognitive functions. In particular, the human cerebral cortex is greatly expanded, allowing accommodation of the evolutionary increases in the number of cortical areas, the functional modules that subserve perception, attention, motor control, cognition, memory, and learning. Duplicated genes specific to the Homo lineage have played key roles in human speciation, particularly in the development of the highly complex human brain ([ 1 ][1]) and the circuits of the cerebral cortex ([ 2 ][2]). On page 546 of this issue, Heide et al. ([ 3 ][3]) identify ARHGAP11B [Rho guanosine triphosphatase (GTPase) activating protein 11B], a human-specific duplicated gene, as a regulator of human cerebral cortex development. By expressing ARHGAP11B in marmosets, a smooth-brained primate, this study explores the influence of the gene on expansion of the primate cortex.The human neocortex is marked by an important increase in surface area and its radial dimension, the latter due to the selective enlargement of the supragranular layers ([ 4 ][4]). Supragranular neurons have an important role in the integration of ascending and descending cortico-cortical pathways that underlie information transfer and processing between the numerous hierarchically organized cortical areas in primates. Therefore, the specific expansion of supragranular neurons contributes to the cognitive functions of primates, culminating in humans ([ 4 ][4]). Much of the origin of this expansion can be attributed to primate-specific features of corticogenesis, including an expanded progenitor pool in the developing primate cerebral cortex: the outer subventricular zone (OSVZ ) ([ 5 ][5]), which includes specialized progenitors called basal radial glial cells (bRGs) ([ 6 ][6]). bRGs are endowed with extensive proliferative capacities and generate mostly supragranular neurons ([ 7 ][7]).ARHGAP11B has received much attention because it is specifically enriched in cortical bRGs ([ 8 ][8]). When locally overexpressed in mouse or ferret cortex, ARHGAP11B boosts bRG proliferation and increases the numbers of cortical neurons ([ 8 ][8], [ 9 ][9]). These observations suggest that this gene could link specific aspects of primate corticogenesis and characteristic features of the adult primate cortex architecture. To test this, Heide et al. expressed ARHGAP11B in the developing cortex of the embryonic marmoset. When ARHGAP11B is expressed under the control of the human promoter and upstream regulatory sequences, the transgenic midgestation marmoset exhibits an enlarged developing cortex with signs of folding. The crucial observation is that there is a selective increase in the numbers of neurons in the supragranular layers. This “humanization” of the marmoset fetal cortex demonstrates that expression of ARHGAP11B in bRGs in a primate substrate has the capacity to contribute to neocortical expansion and supragranular complexification during human evolution. ARHGAP11B -induced expansion of the cortical progenitor pool is mediated by metabolic changes in mitochondria, particularly increased glutaminolysis, a characteristic of highly mitotically active cells ([ 10 ][10]). This illustrates how cell metabolism—one of the most ancient of biological networks—participates in shaping the human lineage.![Figure][11]Shaping the human cortexHeide et al. show that ARHGAP11B [Rho guanosine triphosphatase (GTPase) activating protein 11B] boosts proliferation in the outer subventricular zone, leading to increased production of cells destined for the supragranular layers. The counterstream architecture of the supragranular layers comprises feedback projections carrying top-down signals (blue arrows) that interact with feedforward projections (red arrows) carrying bottom-up sensory signals. The integration of these two pathways into the local microcircuit is a key feature of hierarchical processing in the primate cortex and will be favored by increased numbers of supragranular neurons.GRAPHIC: MELISSA THOMAS BAUM/ SCIENCE How does the increased rate of supragranular neuron production, resulting from ARHGAP11B expression in OSVZ progenitors, affect the functional architecture of the cortex? And do these effects provide evolutionary insights? In the cortical hierarchy, areas are linked by a dense network of ascending (or bottom-up) and descending (or top-down) pathways forming a highly distributed hierarchy ([ 11 ][12]). Current theories of hierarchical processing of information in the cortex, including predictive coding theory, postulate that top-down messages signaling expectations interact in the supragranular layers with bottom-up activity from the sensory periphery, thereby enabling the brain to actively infer the causes of sensory stimulus ([ 12 ][13]). Recent structural analysis reveals that in the supragranular layers, top-down and bottom-up connections form two opposing streams

Source: Evolution of the human brain | Science

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s